-
详解数据管理发展的五个阶层
所属栏目:[大数据] 日期:2022-05-20 热度:54
近年来现代化企业都在改革现有的数据管理体系,优化原有的基于策略定义的数据管理模型,逐渐开始使用基于数据使用行为的数据管理方式。以确保数据不仅可用,而且保持活性,从而始终让数据资产充分发挥本身价值。 从历史的视角看,数据管理是一个不断进化发展[详细]
-
数据在网络中是怎样传输的
所属栏目:[大数据] 日期:2022-05-20 热度:58
整个请求交互过程分为了几个部分,首先最上层就是应用程序,接着往下是 Socket 库。 再下面就是操作系统的内部了,这里面就包括了协议栈,协议栈上半部分为 TCP 和 UDP ,它们都是负责数据的收发。 只是一个需要 连接,一个不需要连接可以直接收发数据,这两者[详细]
-
区块链在 数据为王 的年代扮演了什么角色?
所属栏目:[大数据] 日期:2022-05-20 热度:160
在当今数据为王的时代,数据作为企业、组织、乃至国家的战略资产,其重要性不言而喻。今天老蔡想和大家一起探讨下以下几方面的问题:1. 数据管理的全生命周期;2. 传统数据治理的弊端;3. 当代信息技术间的相互关系;以及4. 最后抛出区块链技术在数据治理过[详细]
-
行业大数据有什么安全风险
所属栏目:[大数据] 日期:2022-05-20 热度:194
网际空间安全面临的威胁越来越多样化。移动网络、云和虚拟化、物 联网、工控系统等技术领域的快速发展,使得保护对象和攻击路径都变得 更加复杂。而攻击来源也从早期的个人黑客变为犯罪团伙、政治势力、网 络部队等更严密的组织。甚至大数据技术本身也被攻击[详细]
-
数据管理的现实和商业智能的将来
所属栏目:[大数据] 日期:2022-05-20 热度:158
无论企业在哪个行业工作,拥有多少员工,或者是否面向消费者、企业、私营部门或公共部门进行营销,都不再重要。无论来自哪里,数据和分析都是日常现实。大多数企业定期收到的数据量是天文数字。全球的IT部门都在努力实施工具和实践,对他们收到的信息进行优[详细]
-
数据剖析的几个误区
所属栏目:[大数据] 日期:2022-05-20 热度:151
在IT领域,炒作越大,误解越多,数据分析也不例外。分析是当今信息技术最热门的方面之一,可以带来巨大的商业收益,但错误的观念可能会阻碍分析能力顺利和及时的流转,从而使商业用户和最终客户受益。当企业创建或扩大他们的分析战略时,以下是他们可能要记[详细]
-
终于有人把元数据说明白了
所属栏目:[大数据] 日期:2022-05-20 热度:134
元数据管理工具是企业数据治理的重要抓手,它可以帮助企业解决数据查找难、理解难等问题,促进数据的集成和共享。 一、系统架构 从应用角度看,元数据管理平台可分为数据源层、元数据采集层、元数据管理层、元数据应用层四层架构,如图1所示。 1. 数据源层[详细]
-
谈谈大数据技术现状和分类
所属栏目:[大数据] 日期:2022-05-20 热度:190
随着社交媒体、物联网和多媒体应用等各种来源产生的海量数据的诞生,大数据已经成为一个重要的研究领域。大数据在许多决策和预测领域发挥了关键作用,如推荐系统、商业分析、医疗保[详细]
-
大数据在智慧城市建设中有什么应用
所属栏目:[大数据] 日期:2022-05-20 热度:126
智慧城市是以为民服务全程全时、城市治理高效有序、数据开放共融共享、经济发展绿色开源、网络空间安全清朗为主要目标,通过体系规划、信息主导、改革创新,推进新一代信息技术与城市现代化深度融合、迭代演进,实现国家与城市协调发展的新生态。 智慧能源[详细]
-
数据分析和数据科学的几大不一样之处
所属栏目:[大数据] 日期:2022-05-20 热度:69
在大数据的世界里,您可能会经常听到两个词语:数据科学(Data Science)和数据分析(Data Analytics)。它们虽然从字面上有些相似,但是在大数据的背景下它们强调的是不同的能力和技能方面。下面,我将从职业决策与规划的角度,和您讨论两者之间的差异。 一、知[详细]
-
为什么2022年仍然存在数据孤岛?
所属栏目:[大数据] 日期:2022-04-12 热度:188
企业摆脱数据孤岛并不容易。人们需要了解什么是数据孤岛、为何难以消除数据孤岛以及如何克服这些挑战。 好消息是,如今可供企业使用的数据比以往任何时候都多。从客户注册在线帐户到向企业提供他们的详细信息,信息对于帮助企业做出关键业务决策非常宝贵。[详细]
-
供应链分析 保持物流顺畅的五个技巧
所属栏目:[大数据] 日期:2022-04-12 热度:58
事实表明,越来越多的企业采用数据分析来应对供应链中断,并加强供应链管理(SCM)。 专业服务和咨询机构毕马威公司在最近发布的一份研究报告中指出,目前有几项重大中断正在影响供应链。其中包括由于新冠疫情而导致的全球物流持续中断,这些中断将继续影响企[详细]
-
2022年的5个主要的数据迁移趋势
所属栏目:[大数据] 日期:2022-04-12 热度:177
数据似乎总是需要迁移,无论是从内部部署设施迁移到云平台,还是从操作系统到长期存档,数据始终在移动。 以下是2022年数据迁移市场的五个主要趋势: 1.非结构化数据迁移 2022年,首席信息官将会继续关注基础设施的现代化,以支持由于下一代应用程序、云计算[详细]
-
创建数据驱动的价值生态系统的3个步骤
所属栏目:[大数据] 日期:2022-04-12 热度:76
事实证明,管理大量数据和颠覆性技术的关键在于建立一个能力中心。 尽管许多企业在其数据分析项目中使用人工智能和机器语言工具作为核心推动因素,并且全球人工智能支出持续增加,但事实上,大多数数据科学项目注定要失败。 导致这些失败的原因有很多,从人[详细]
-
需要避免的7个数据治理错误
所属栏目:[大数据] 日期:2022-04-12 热度:168
如今的每个数据交易都是一种商业交易,这是构建一个强大、安全、适应性强且尽可能无错误的数据治理框架至关重要的原因。 大多数首席信息官都知道,处理不当的数据可能会导致财务、声誉、法律和其他问题。这就是企业需要拥有强大的数据治理策略的原因,也就是[详细]
-
汽车公司和移动通信公司如何使用大数据提高驾驶安全性
所属栏目:[大数据] 日期:2022-04-12 热度:77
大数据技术如今在保障驾驶安全方面取得了重要进展,而有些人没有意识到大数据提供的惊人好处。大数据的最大好处之一是它可以帮助提高汽车驾驶的安全性。 在阻止发生交通事故方面,数据分析技术变得越来越有用。许多企业正在共享数据,为提高交通安全提供帮助[详细]
-
企业IT可以真正将大数据应用到哪些地方?
所属栏目:[大数据] 日期:2022-04-12 热度:107
在各行业领域中,很少有比大数据更容易提及同时又不太容易理解的术语。这可能会让人们很容易将大数据视为一个不经意提到的流行语,而不仅仅是对于企业的流程和业务密切相关的真实价值的一个概念,但这是一个错误。理解并正确利用大数据对于任何企业的成功都[详细]
-
业务分析师获取更多收入可以采取的7个措施
所属栏目:[大数据] 日期:2022-04-12 热度:190
无论是原地踏步还是展翅高飞,业务分析师都有很多方法提升其业务水平和收入。 业务分析师的工作通常是企业中最重要的工作之一:利用数据分析来弥合IT与业务之间的差距。在这一过程中,他们与业务领导者和用户互动,以更好地了解流程、产品、服务、软件和硬件[详细]
-
选择嵌入式分析供应商时需要考虑的8件事
所属栏目:[大数据] 日期:2022-04-12 热度:161
选择嵌入式分析供应商并非易事,市场上可用的解决方案太多了,因此需要了解如何做出最佳决策,并确保投资更有效的解决方案。 事实是并没有直接的答案。正确答案其实是几个正确答案的组合,当然还有企业的特定业务需求。因此,企业在选择嵌入式分析供应商时,[详细]
-
最大化数据分析价值的5种方法
所属栏目:[大数据] 日期:2022-04-12 热度:130
数字时代使大多数企业追求数据驱动战略的成果,但确保获得回报比大多数人想象的要微妙得多。 许多企业都在收集大量数据并对其进行分析,而通过分析这些数据获得最佳商业价值完全是另一回事。 在分析工具上投入巨资的企业可能没有找到方法来确保其努力带来的[详细]
-
运用大数据进行营销的9种最佳方法
所属栏目:[大数据] 日期:2022-04-12 热度:51
大数据驱动营销业务的发展如今比以往任何时候都更加重要,所以需要战略性地使用这些实践。 对于很多企业来说,大数据已经成为一项非常具有价值的技术资产,并利用大数据改善业务。数据分析和人工智能技术的一些最佳实践已经出现在营销领域。 数据驱动营销比[详细]
-
2022年数据可视化的主要趋向
所属栏目:[大数据] 日期:2022-04-12 热度:125
大数据改变不同行业的例子不胜枚举。它可以用于减少交通堵塞、个性化产品和服务、改善视频游戏体验等视觉效果。 毫无疑问,大量非结构化数据的收集和分析已经是一个巨大的突破。人们需要了解数据可视化及其在大数据应用中的作用。 如果没有将人们所寻找的东[详细]
-
组建高效分析团队的7个最佳实行
所属栏目:[大数据] 日期:2022-04-12 热度:165
数据驱动的成功取决于强大、多样化、跨职能的数据团队。IT领导者需要采用创建和维护团队的技巧,以提供敏锐的数据洞察力。 如果企业部署了最新和最好的数据分析工具,但未能组建高效的分析团队,那么会发生什么?将会失去创收机会,并浪费大量的时间和费用。[详细]
-
通过更好的数据质量改进决策的8个重要提醒
所属栏目:[大数据] 日期:2022-04-12 热度:125
企业对良好数据质量的需求日益增长,人们需要了解如何获得良好的数据质量以及它如何影响决策。 搜索引擎上有关数据质量这一术语多达600万项,这清楚地表达了数据质量的重要性及其在决策场景中的关键作用。了解数据有助于对其进行分类和鉴定,以便在所需场景[详细]
-
大数据和人工智能如何完全改变支付方式
所属栏目:[大数据] 日期:2022-04-12 热度:119
事实表明,数据技术的进步和发展使虚拟卡和电子钱包更适合支付管理。 数据如今已经成为企业必不可少的资产,而金融行业是从数据中受益的主业行业之一。通过解释和分析数据,企业可以了解和预测趋势、提高安全性,并做出数据驱动的决策。大数据和人工智能技术[详细]